DCMM国家标准结合数据生命周期管理各个阶段的特征,按照组织、制度、流程、技术对数据管理能力进行了分析、总结,提炼出组织数据管理的八大过程域,并对每项能力域进行了二级过程项(28个过程项)和发展等级的划分(5个等级)以及相关功能介绍和评定指标(441项指标)的制定。
评估依据
数据管理能力成熟度评估的依据是国家标准GB/T 36073-2018《数据管理能力成熟度评估模型》,该标准借鉴了国际上数据管理理论框架和方法,在综合考虑国内数据管理情况发展的基础上,整合了标准规范、管理方法论、数据管理模型、成熟度分级等多方面内容。
评估内容
DCMM数据管理能力成熟度评估模型定义了数据战略、数据治理、数据架构、数据应用、数据安全、数据质量、数据标准和数据生存周期八个核心能力域及28个能力项,并以组织、制度、流程和技术作为八个核心域评价维度。
能力等级
DCMM将数据管理能力成熟度划分为五个等级,自低向高依次为初始级、受管理级、稳健级、量化管理级和优化级,不同等级代表企业数据管理和应用的成熟度水平不同。
DCMM评估企业收益
1、评分结果:全面展示企业数据管理各能力项成熟度评估等级。
2、评估报告:分析企业数据管理现状,识别数据管理问题及改进项,给出数据管理能力成熟度等级推荐建议。
3、数据管理发展路线图(可选):根据企业管理的需要,以及业界最佳实践,制定针对性的企业数据管理发展路线图,并且根据现状制定针对性的行动计划。
4、评估证书:颁发企业数据管理能力成熟度评估证书。
DCMM主要适用对象
1、数据拥有方:金融与保险机构、互联网企业、电信运营商、工业企业、数据中心所属主体、高校、政务数据中心等;
2、数据解决方案提供方:数据开发/运营商、信息系统建设和服务提供商、信息技术服务提供商等。
数据战略:数据战略规划、数据战略实施、数据战略评估
数据治理:数据治理组织、数据制度建设、数据治理沟通
数据架构:数据模型、数据分布、数据集成与共享、元数据管理
数据应用:数据分析、数据开放共享、数据服务
数据安全:数据安全策略、数据安全管理、数据安全审计
数据质量:数据质量需求、数据质量检查、数据质量分析、数据质量提升
数据标准:业务数据、参考数据和主数据、数据元、指标数据
数据生存周期:数据需求、数据设计和开放、数据运维、数据退